

BRB Silanil® range It's all about silanes

BRB International BV is a global producer of specialty silicones, core intermediates and silanes. We offer a comprehensive range of silicone based products, serving many different applications, with the aim to enhance everyday life. BRB is committed to delivering a customer driven service and consistently high quality products at a market-conscious price level.

With an extensive experience in silicones, BRB is the largest independent producer in the world able to challenge the silane market leaders.

- We offer the most popular silane block busters at a competitive price
- We ensure premium quality and reliability
- We give you the possibility to eliminate your main single sourcing issues
- We have demonstrated the ability to supply in all situations over the years
- We can customized special blends like no other silane major

Being used in many industries, silanes are particularly valuable as adhesion promoters, cross-linkers, coupling agents, surface modifiers and water scavengers.

Typical applications and industries include: fiberglass, glass and rock wool, mineral reinforcement, foundry resins, rubbers, coupling agents, filler coating, sealants and adhesives, paints and coatings.

Organofunctional silanes

Two groups: Silane is a reactive chemical typically containing a functional group and alkoxy groups.

The functional group is useful for bonding with resins, improving compatibility with organic materials, and enhancing hydrophobicity

- depending on characteristics of each functional group.

Alkoxy

The alkoxy groups, which bond with a silicon atom, associate with hydrolysis reaction, are so-called hydrolyzable silyl groups. These groups form chemical bonds with inorganic materials;

- The methoxy group hydrolyzes faster than the ethoxy group.
- The ethoxy group provides better stability during hydrolysis reaction and releases ethyl alcohol (byproduct) which is eco-friendly substance.

FG Functional groups (organic types), e.g. Vinyl, Glycidoxy (Epoxy), Amino, Methacryloxy, Mercapto, Alkyl, etc.

OR Alkoxy groups, e.g. Methoxy (-OCH₃), Ethoxy (-OCH₂CH₃), etc.

Mechanism

When storing under nitrogen gas, silane is a non-reactive chemical in form of FG-Si-OR. Once a container of silane is unsealed, silane hydrolyzes with moisture where -Si-OR changes to -Si-OH (silanol group). This is the first step of reaction so-called *hydrolysis*.

* H₂O can be from atmosphere

The second step of the reaction is *condensation* where the silanol groups readily bond with substrates or fillers containing hydroxyl groups or other reactive groups; in this case silane acts as an adhesion promoter or a coupling agent.

In addition, silanol groups also bond each other and create crosslink network among resins; silane herein acts as a crosslinker.

Basic functions

crosslinker

- Create network structure in Polymers
- Increase strength and hardness
- Provide longer service life of products
- Give higher temperature resistance
- Enhance ability of scrub resistance

adhesion promoter coupling agent

- Improve adhesion between resins and substrates
- Enhance corrosion resistance
- Provide compatibility between resins and fillers
- Increase mechanical strengths of composites
- Provide higher filler loading for composites

(ey benefits

Silanil® product range

AMINO		e C							
AMINO 138	©	nar.							
AMINO 138	ni.	iical	ula						
AMINO 138	iia	hem	or m						
176 N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (CH ₂ O ₃ Si-(CH ₂) ₂ NH(CH ₂) ₂ NH ₂ 307 N-(2-aminoethyl)-3-aminopropyl-methyldimethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ NH(CH ₂) ₂ NH ₂ 505 N-(2-aminoethyl)-3-aminopropyl-triethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ NH(CH ₂) ₂ NH ₂ 581 3-aminopropyltriethoxysilane aqueous solution oligomer 919 3-aminopropyltriethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ NH ₂ 5919 HP 3-aminopropyltriethoxysilane high purity (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ NH ₂ 5258 3-glycidoxypropyltrimethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ NH ₂ 5260 3-glycidoxypropyltrimethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ OCH ₂ -C ₂ H ₂ O 5260 3-glycidoxypropyltrimethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ OCH ₂ -C ₂ H ₂ O 5289 3-glycidoxypropylmethyldiethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ OCH ₂ -C ₂ H ₂ O 5289 3-glycidoxypropylmethyldiethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ OCH ₂ -C ₂ H ₂ O 5276 vinyltrimethoxysilane (CH ₂ OCH ₂ CH ₂ O ₃ Si-CH=CH ₂ 5276 vinyltrimethoxysilane (CH ₂ O ₃ Si-CH=CH ₂ 5276 vinyltrimethoxysilane (CH ₂ O ₃ Si-CH=CH ₂ 5270 3-methacryloxypropyltrimethoxysilane (CH ₂ O ₃ Si-(CH ₂) ₂ SH 5270 3-methacryloxypropyltrimethoxysilane (CH ₂ O ₃ Si-(CH ₂) ₂ SH 5280 3-methacryloxypropyltrimethoxysilane (CH ₂ O ₃ Si-(CH ₂) ₂ SH 5280 3-methyltris(methylethylketoxime)silane (CH ₂ O ₃ Si-(CH ₂) ₂ SH 5280 3-methyltris(methylethylketoxime)silane (CH ₂ O ₃ O ₃ Si-(CH ₂) ₂ SH 5280 3-methyltriacetoxysilane (CH ₂ CH ₂ O ₃ O ₃ Si-CH ₂ CH ₂ 5290 3-methyltriacetoxysilane (CH ₂ CH ₂ O ₃ O ₃ Si-CH ₂ CH ₂ 5291 3-methyltriacetoxysilane (CH ₂ CH ₂ O ₃ O ₃ Si-CH ₂ CH ₂ 5291 3-methyltriacetoxysilane (CH ₂ CH ₂ O ₃ O ₃ Si-CH ₂ CH ₂ CH ₂ 5292 3-methyltriethoxysilane (CH ₂ O ₃ O ₃ Si-CH ₂ CH ₂ CH ₂ 5293 3-methyltriethoxysilane (CH ₂ O ₃ O ₃ Si-CH ₂ CH ₂ CH ₂ 5293 3-methyltriethoxysilane (CH ₃ O ₃ O ₃ Si-CH ₂ CH ₂ CH ₃ 5293 3-methyltriethoxysilane (CH ₃ O ₃ O ₃ Si-CH ₂ CH ₃ CH ₃ O ₃ Si-CH ₂ CH ₃ CH ₃ O ₃ Si-CH ₂ CH ₃			-						
176 N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (CH ₂ O ₃ Si-(CH ₂) ₂ NH(CH ₂) ₂ NH ₂ 307 N-(2-aminoethyl)-3-aminopropyl-methyldimethoxysilane (H ₂ (CH ₂ O ₃ Si-(CH ₂) ₂ NH(CH ₂) ₂ NH ₂ 505 N-(2-aminoethyl)-3-aminopropyl-riethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ NH(CH ₂) ₂ NH ₂ 581 3-aminopropyltriethoxysilane aqueous solution oligomer 919 3-aminopropyltriethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ NH ₂ 919 HP 3-aminopropyltriethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ NH ₂ 258 3-glycidoxypropyltrimethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ NH ₂ 260 3-glycidoxypropyltriethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ OCH ₂ -C ₂ H ₂ O 260 3-glycidoxypropyltriethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ OCH ₂ -C ₂ H ₂ O 289 3-glycidoxypropyltrimethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ OCH ₂ -C ₂ H ₂ O 289 3-glycidoxypropyltrimethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₂ OCH ₂ -C ₂ H ₂ O 276 vinyltrimethoxysilane (CH ₂ O ₂ O ₃ Si-CH=CH ₂ 276 vinyltrimethoxysilane (CH ₂ O ₃ O ₃ Si-CH=CH ₂ 276 vinyltrimethoxysilane (CH ₂ O ₃ O ₃ Si-CH=CH ₂ 278 (CH ₂ O ₃ O ₃ Si-CH=CH ₂ 279 3-methacryloxypropyltrimethoxysilane (CH ₂ O ₃ O ₃ Si-CH=CH ₂ 270 3-methacryloxypropyltrimethoxysilane (CH ₂ O ₃ O ₃ Si-CH=CH ₂ 270 3-methacryloxypropyltrimethoxysilane (CH ₂ O ₃ O ₃ Si-CH ₂ O ₃ O ₃ Si-CH ₂ O ₃ O ₃ Si-CH ₂ O ₃ Si-CH	138	3-aminopropyltrimethoxysilane	(CH ₃ O) ₃ Si-(CH ₂) ₃ NH ₂						
307 N-(2-aminoethyl)-3-aminopropyl-methyldimethoxysilane CH ₂ (CH ₂ O) ₂ Si-(CH ₂) ₂ NH(CH ₂) ₂ NH ₂ 505 N-(2-aminoethyl)-3-aminopropyl-triethoxysilane (CH ₂ CH ₂ O) ₂ Si-(CH ₂) ₂ NH(CH ₂) ₂ NH ₂ 581 3-aminopropyltriethoxysilane aqueous solution oligomer 919 3-aminopropyltriethoxysilane (CH ₂ CH ₂ O) ₂ Si-(CH ₂) ₂ NH ₂ 919 HP 3-aminopropyltriethoxysilane high purity (CH ₂ CH ₂ O) ₂ Si-(CH ₂) ₂ NH ₂ 588 3-glycidoxypropyltrimethoxysilane (CH ₂ O) ₂ Si-(CH ₂) ₂ OCH ₂ -C ₂ H ₂ O 260 3-glycidoxypropyltriethoxysilane (CH ₂ CH ₂ O) ₂ Si-(CH ₂) ₂ OCH ₂ -C ₂ H ₂ O 289 3-glycidoxypropylmethyldiethoxysilane (CH ₂ CH ₂ O) ₂ Si-(CH ₂) ₂ OCH ₂ -C ₂ H ₂ O VINYL 106 vinyltris(2-methoxyethoxy)silane (CH ₂ CH ₂ O) ₂ Si-(CH ₂ O) ₂ Si-(CH ₂ O) ₂ CH ₂ -C ₂ H ₂ O 276 vinyltrimethoxysilane (CH ₂ CH ₂ O) ₂ Si-CH=CH ₂ 276 vinyltrimethoxysilane (CH ₂ O) ₂ Si-(CH ₂ O) ₂ Si-CH=CH ₂ 2780 vinyltriethoxysilane (CH ₂ O) ₂ Si-(CH ₂ O) ₂ Si-CH=CH ₂ 289 3-methacryloxypropyltrimethoxysilane (CH ₂ O) ₂ Si-(CH ₂ O) ₂ Si-CH=CH ₂ 276 vinyltrimethoxysilane (CH ₂ O) ₂ Si-(CH ₂ O) ₂ Si-CH=CH ₂ 276 vinyltrimethoxysilane (CH ₂ O) ₂ Si-(CH ₂ O) ₂ Si-CH=CH ₂ 276 vinyltris(methylethylketoxime)silane (CH ₂ O) ₂ Si-(CH ₂ O) ₂ Si-CH=CH ₂ 276 vinyltris(methylethylketoxime)silane (CH ₂ O) ₂ Si-(CH ₂ O) ₂ Si-CH ₂ CH ₂ O) 270 3-methyltris(methylethylketoxime)silane (CH ₂ CH ₂ O) ₂ Si-CH ₂ Si-CH ₂ O) ₂ Si-CH ₂ CH ₂ O 270 vinyltris(methylethylketoxime)silane (CH ₂ CH ₂ CCH ₂) ₂ Si-CH ₂ CH ₂ O) ₂ Si-CH ₂ CH ₂ O 270 vinyltris(methylethylketoxime)silane (CH ₂ CH ₂ CO) ₂ Si-CH ₂ CH ₂ O) ₂ Si-CH ₂ CH ₂ O 270 vinyltris(methylethoxysilane (CH ₂ CH ₂ O) ₂ Si-CH ₂ CH ₂ O) ₂ Si-CH ₂ CH ₂ O 270 vinyltris(methylethoxysilane (CH ₂ CH ₂ O) ₂ Si-CH ₂ CH ₂ O) ₂ Si-CH ₂ CH ₂ O 270 propyltrimethoxysilane (CH ₂ CH ₂ O) ₂ Si-CH ₂ CH ₂ O 270 methyltriethoxysilane (CH ₂ CH ₂ O) ₂ Si-CH ₂ CH ₂ CH ₂ O 270 methyltriethoxysilane (CH ₂ CH ₂ O) ₂ Si-CH ₂ CH ₂ CH ₂ O 270 methyltriethoxysilane (CH ₂ CH ₂ O) ₂ Si-CH ₂ CH ₂ CH ₂ O 270 methyltriethoxysilane (CH ₂ CH ₂ O) ₂ Si-CH	176	N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane							
3-aminopropyltriethoxysilane aqueous solution oligomer 919 3-aminopropyltriethoxysilane (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₃ NH ₂ 919 HP 3-aminopropyltriethoxysilane high purity (CH ₂ CH ₂ O ₃ Si-(CH ₂) ₃ NH ₂ EPOXY 258 3-glycidoxypropyltrimethoxysilane (CH ₂ O) ₃ Si-(CH ₂) ₃ OCH ₂ -C ₂ H ₂ O 260 3-glycidoxypropyltriethoxysilane (CH ₂ CH ₂ O) ₃ Si-(CH ₂) ₃ OCH ₂ -C ₂ H ₂ O 289 3-glycidoxypropylmethyldiethoxysilane (CH ₃ CH ₂ CH ₂ O) ₃ Si-(CH ₂) ₃ OCH ₂ -C ₂ H ₂ O VINYL 106 vinyltris(2-methoxyethoxy)silane (CH ₃ CH ₂ CH ₂ O) ₃ Si-CH=CH ₂ 276 vinyltrimethoxysilane (CH ₃ O ₁ Si-CH=CH ₂ METHACRYLOXY AND MERCAPTO 250 3-methacryloxypropyltrimethoxysilane (CH ₃ CH ₂ O ₃ Si-CH=CH ₂ 442 3-mercaptopropyltrimethoxysilane (CH ₃ O ₃ Si-(CH ₂) ₃ O-(C=O)-C(CH ₂)=CH ₂ 442 3-mercaptopropyltrimethoxysilane (CH ₃ O ₃ Si-(CH ₂) ₃ Si-CH=CH ₂ VOS vinyltris(methylethylketoxime)silane (CH ₃ O ₃ Si-(CH ₂) ₂ SH MOS methyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₂)=N-O) ₂ Si-CH ₃ VOS vinyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₂)=N-O) ₂ Si-CH ₃ ETAS methyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ETAS ethyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH ₃ CH ₂ O ₃ Si-CH ₃ , CH ₃	307	N-(2-aminoethyl)-3-aminopropyl-methyldimethoxysilane							
919 3-aminopropyltriethoxysilane (CH ₃ CH ₂ O ₃ Si-(CH ₂) ₃ NH ₂ 919 HP 3-aminopropyltriethoxysilane high purity (CH ₃ CH ₂ O ₃ Si-(CH ₂) ₃ NH ₂ 258 3-glycidoxypropyltriethoxysilane (CH ₃ O ₃ Si-(CH ₂) ₃ OCH ₂ -C ₂ H ₃ O 260 3-glycidoxypropyltriethoxysilane (CH ₃ CH ₂ O ₃ Si-(CH ₂) ₃ OCH ₂ -C ₃ H ₃ O 289 3-glycidoxypropylmethyldiethoxysilane (CH ₃ CH ₂ O ₃ Si-(CH ₂) ₃ OCH ₂ -C ₃ H ₃ O VINYL 106 vinyltris(2-methoxyethoxy)silane (CH ₃ OCH ₂ -CH ₂ O ₃ Si-CH=CH ₂ 276 vinyltrimethoxysilane (CH ₃ O ₃ Si-CH=CH ₂ 2780 vinyltriethoxysilane (CH ₃ O ₃ Si-CH=CH ₂ METHACRYLOXY AND MERCAPTO 250 3-methacryloxypropyltrimethoxysilane (CH ₃ O ₃ Si-(CH ₂) ₃ O-(C=O)-C(CH ₃)=CH ₂ 442 3-mercaptopropyltrimethoxysilane (CH ₃ O ₃ Si-(CH ₂) ₃ Si-(CH ₂) ₃ SH OXIME MOS methyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O ₃ Si-CH=CH ₂ ACETOXY MTAS methyltriacetoxysilane (CH ₃ C(CH ₃)=N-O ₃ Si-CH ₂ CH ₃ ETAS ethyltriacetoxysilane (CH ₃ C(CO)-O ₃ Si-CH ₂ CH ₃ ETAS ethyltriacetoxysilane (CH ₃ C(CO)-O ₃ Si-CH ₂ CH ₃ ALKYL AND ALKOXY 294 N-O-ctyltriethoxysilane (CH ₃ O ₃ Si-(CH ₂) ₃ CH ₃ 118 methyltrinethoxysilane (CH ₃ O ₃ Si-CH ₃ CH ₃ CH ₃ 150 propyltrimethoxysilane (CH ₃ O ₃ Si-CH ₃ CH ₃ CH ₃ 150 propyltrimethoxysilane (CH ₃ CH ₃ O ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ CH ₃ O ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ CH ₃ O ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ CH ₃ O ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ CH ₃ O ₃ Si-CH ₃ 150 groupltrimethoxysilane (CH ₃ CH ₃ O ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ CH ₃ O ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ CH ₃ O ₃ Si-CH ₃ 150 groupltrimethoxysilane (CH ₃ O ₃ Si-CH ₃ CH ₃ CH ₃ 150 groupltrimethoxysilane (CH ₃ CH ₃ O ₃ Si-CH ₃ CH ₃ CH ₃ 150 groupltrimethoxysilane (CH ₃ CH ₃ O ₃ Si-CH ₃ CH ₃	505	N-(2-aminoethyl)-3-aminopropyl-triethoxysilane	(CH ₃ CH ₂ O) ₃ Si-(CH ₂) ₃ NH(CH ₂) ₂ NH ₂						
919 HP 3-aminopropyltriethoxysilane high purity (CH ₃ CH ₂ O),3i-(CH ₂),NH ₂ EPOXY 258 3-glycidoxypropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂),OCH ₂ -C ₂ H ₃ O 260 3-glycidoxypropyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-(CH ₂) ₃ OCH ₂ -C ₂ H ₃ O 289 3-glycidoxypropylmethyldiethoxysilane CH ₃ (CH ₂ O) ₃ Si-(CH ₂) ₃ OCH ₂ -C ₂ H ₃ O VINYL 106 vinyltris(2-methoxyethoxy)silane (CH ₃ OCH ₂ CH ₂ O) ₃ Si-CH=CH ₃ 276 vinyltrimethoxysilane (CH ₃ O) ₃ Si-CH=CH ₂ 2780 vinyltriethoxysilane (CH ₃ O) ₃ Si-CH=CH ₂ METHACRYLOXY AND MERCAPTO 250 3-methacryloxypropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ O-(C=O)-C(CH ₃)=CH ₂ 442 3-mercaptopropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ O-(C=O)-C(CH ₃)=CH ₂ OXIME MOS methyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₃ VOS vinyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₂ CH ₃ ACETOXY MTAS methyltriacetoxysilane (CH ₃ -(CO-O) ₂ Si-CH ₂ CH ₃ PTAS/MTAS 70:30 propyltriacetoxysilane / methyltriacetoxysilane 70:30 (CH ₃ -(CO-O) ₂ Si-CH ₂ CH ₃ and CH ₃ -(CO-O) ₃ Si-CH ₃ CH ₃ and CH ₃ -(CO-O) ₃ Si-CH ₃ CH ₃ and CH ₃ -(CO-O) ₃ Si-CH ₃ CH ₃ and CH ₃ -(CO-O) ₃ Si-CH ₃ CH ₃ and CH ₃ -(CO-O) ₃ Si-CH ₃ CH ₃ and CH ₃ -(CO-O) ₃ Si-CH ₃ CH ₃ and CH ₃ -(CO-O) ₃ Si-CH ₃ CH ₃ and CH ₃ -(CO-O) ₃ Si-CH ₃ CH ₃ and CH ₃ -(CO-O) ₃ Si-CH ₃ CH ₃ and CH ₃ -(CO-O) ₃ Si-CH ₃ CH ₃ and CH ₃ -(CO-O) ₃ Si-CH ₃ CH ₃ CH ₃ CO-O) ₃ Si-CH ₃ CH ₃ CO-OO ₃ Si-CH ₃ CO-O	581	3-aminopropyltriethoxysilane aqueous solution	oligomer						
EPOXY 258 3-glycidoxypropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₃) ₃ OCH ₂ -C ₃ H ₃ O 260 3-glycidoxypropyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-(CH ₃) ₃ OCH ₂ -C ₃ H ₃ O 289 3-glycidoxypropylmethyldiethoxysilane (CH ₃ CH ₂ O) ₃ Si-(CH ₂) ₃ OCH ₂ -C ₃ H ₃ O VINYL 106 vinyltris(2-methoxyethoxy)silane (CH ₃ OCH ₂ -CH ₃ O) ₃ Si-CH=CH ₂ 276 vinyltrimethoxysilane (CH ₃ O) ₃ Si-CH=CH ₂ 780 vinyltriethoxysilane (CH ₃ O) ₃ Si-CH=CH ₂ 250 3-methacryloxypropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ O-(C=O)-C(CH ₃)=CH 442 3-mercaptopropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ Si-(CH ₂) ₃ Si-(CH ₂)-Si-(CH	919	3-aminopropyltriethoxysilane	(CH ₃ CH ₂ O) ₃ Si-(CH ₂) ₃ NH ₂						
258 3-glycidoxypropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ OCH ₂ -C ₂ H ₃ O 260 3-glycidoxypropyltriethoxysilane (CH ₃ CH ₂ O) ₅ Si-(CH ₂) ₃ OCH ₂ -C ₂ H ₂ O 289 3-glycidoxypropylmethyldiethoxysilane CH ₃ (CH ₃ CH ₂ O) ₂ Si-(CH ₂) ₃ OCH ₂ -C ₂ H ₂ O VINYL 106 vinyltris(2-methoxyethoxy)silane (CH ₃ OCH ₂ CH ₂ O) ₃ Si-CH=CH ₂ 276 vinyltrimethoxysilane (CH ₃ O) ₃ Si-CH=CH ₂ 780 vinyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH=CH ₂ METHACRYLOXY AND MERCAPTO 250 3-methacryloxypropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ O-(C=O)-C(CH ₃)=CH ₂ 442 3-mercaptopropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ SH OXIME MOS methyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₃ VOS vinyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₂ CH ₂ ACETOXY MTAS methyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ETAS ethyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ (CH ₃ -(C=O)-O) ₃ Si-CH ₃ CH ₃	919 HP	3-aminopropyltriethoxysilane high purity	(CH ₃ CH ₂ O) ₃ Si-(CH ₂) ₃ NH ₂						
260 3-glycidoxypropyltriethoxysilane (CH,CH,O),Si-(CH,J),OCH,-C,H,O 289 3-glycidoxypropylmethyldiethoxysilane CH ₃ (CH,CH,O),Si-(CH,J),OCH,-C,H,O VINYL 106 vinyltris(2-methoxyethoxy)silane (CH,OCH,CH,O),Si-CH=CH,O 276 vinyltrimethoxysilane (CH,OCH,CH,O),Si-CH=CH,O 276 vinyltrimethoxysilane (CH,OCH,CH,O),Si-CH=CH,O 2780 vinyltriethoxysilane (CH,CH,O),Si-CH=CH,O METHACRYLOXY AND MERCAPTO 250 3-methacryloxypropyltrimethoxysilane (CH,OCH,OCH,OC,OC),OC(CH,OCH,OCH,OC) 442 3-mercaptopropyltrimethoxysilane (CH,OCH,OCH,OC,OC),Si-CH,OC,OC(CH,OCH,OC) VOS winyltris(methylethylketoxime)silane (CH,CH,C(CH,OCH,OC),Si-CH,OC) ACETOXY MTAS methyltriacetoxysilane (CH,GCH,OC),Si-CH,OCH,OC(CH,OC) ETAS ethyltriacetoxysilane (CH,GCH,OC),Si-CH,OCH,OCH,OCH,OCH,OCH,OCH,OCH,OCH,OC) ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH,GH,OC,OC),Si-CH,OCH,OCH,OCH,OCH,OCH,OCH,OCH,OCH,OCH,O	EPOXY								
289 3-glycidoxypropylmethyldiethoxysilane CH ₃ (CH ₃ CH ₂ O) ₂ Si-(CH ₃) ₃ OCH ₂ -C ₂ H ₃ O VINYL 106 vinyltris(2-methoxyethoxy)silane (CH ₃ OH ₂ CH ₂ O) ₃ Si-CH=CH ₂ 276 vinyltrimethoxysilane (CH ₃ O) ₃ Si-CH=CH ₂ 780 vinyltriethoxysilane (CH ₃ O) ₃ Si-CH=CH ₂ METHACRYLOXY AND MERCAPTO 250 3-methacryloxypropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ O-(C=O)-C(CH ₃)=CH ₂ 442 3-mercaptopropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ SH OXIME MOS methyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₃ VOS vinyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH=CH ₂ ACETOXY MTAS methyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ETAS ethyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ PTAS/MTAS 70:30 propyltriacetoxysilane / methyltriacetoxysilane 70:30 (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ and (CH ₃ -(C=O)-O) ₃ Si-CH ₃ CH ₃ ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH ₃ O) ₃ Si-CH ₃ 118 methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ Si 28 Tetraethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH ₃	258	3-glycidoxypropyltrimethoxysilane	(CH ₃ O) ₃ Si-(CH ₂) ₃ OCH ₂ -C ₂ H ₃ O						
VINYL 106 vinyltris(2-methoxyethoxy)silane (CH ₃ OCH,CH ₂ O) ₃ Si-CH=CH ₂ 276 vinyltrimethoxysilane (CH ₃ O) ₃ Si-CH=CH ₂ 780 vinyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH=CH ₂ METHACRYLOXY AND MERCAPTO 250 3-methacryloxypropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₂ O-(C=O)-C(CH ₃)=CH ₂ 442 3-mercaptopropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ Si-(CH ₂) ₃ Si-CH ₂ CH ₂ OXIME MOS methyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₃ VOS vinyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₂ CH ₂ ACETOXY MTAS methyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ETAS ethyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ETAS ethyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ CH ₃ ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH ₃ O) ₃ Si-CH ₃ 118 methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 118 methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 203 methyltriethoxysilane (CH ₃ O) ₃ Si-CH ₃ Si 28 Tetraethoxysilane (CH ₃ O) ₃ Si-CH ₃	260	3-glycidoxypropyltriethoxysilane	(CH ₃ CH ₂ O) ₃ Si-(CH ₂) ₃ OCH ₂ -C ₂ H ₃ O						
106 vinyltris(2-methoxyethoxy)silane (CH ₃ OCH ₂ CH ₂ O) ₃ Si-CH=CH ₂ 276 vinyltrimethoxysilane (CH ₃ O) ₃ Si-CH=CH ₂ 780 vinyltriethoxysilane (CH ₃ O) ₃ Si-CH=CH ₂ METHACRYLOXY AND MERCAPTO 250 3-methacryloxypropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ O-(C=O)-C(CH ₃)=CH ₂ 442 3-mercaptopropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ Si-(CH ₂) ₃ SH OXIME MOS methyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₃ VOS vinyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH=CH ₂ ACETOXY MTAS methyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ ETAS ethyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ PTAS/MTAS 70:30 propyltriacetoxysilane / methyltriacetoxysilane 70:30 (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ and (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH ₃ O) ₃ Si-(CH ₂ D) ₂ CH ₃ 118 methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₂ CH ₂ CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ Si 28 Tetraethoxysilane (CH ₃ CH ₂ O) ₃ Si	289	3-glycidoxypropylmethyldiethoxysilane	CH ₃ (CH ₃ CH ₂ O) ₂ Si-(CH ₂) ₃ OCH ₂ -C ₂ H ₃ O						
276 vinyltrimethoxysilane (CH ₃ O) ₃ Si-CH=CH ₂ 780 vinyltriethoxysilane (CH ₃ O) ₃ Si-CH=CH ₂ METHACRYLOXY AND MERCAPTO 250 3-methacryloxypropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ O-(C=O)-C(CH ₃)=CH ₂ 442 3-mercaptopropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ SH OXIME MOS methyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₃ VOS vinyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₂ CH ₂ ACETOXY MTAS methyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ ETAS ethyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ PTAS/MTAS 70:30 propyltriacetoxysilane / methyltriacetoxysilane 70:30 (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ and (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ and (CH ₃ -(C=O)-O) ₃ Si-CH ₃ CH ₃ ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-(CH ₂ O) ₃ CH ₃ CH ₃ 118 methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ CH ₂ CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ CH ₃	VINYL								
780 vinyltriethoxysilane (CH ₂ CH ₂ O) ₃ Si-CH=CH ₂ METHACRYLOXY AND MERCAPTO 250 3-methacryloxypropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ O-(C=O)-C(CH ₃)=CH ₂ 442 3-mercaptopropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ SH OXIME MOS methyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₃ VOS vinyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₃ VOS winyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ETAS methyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ETAS ethyltriacetoxysilane / methyltriacetoxysilane 70:30 (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ PTAS/MTAS 70:30 propyltriacetoxysilane / methyltriacetoxysilane 70:30 (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ and (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH ₃ O) ₃ Si-CH ₃ 118 methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 methyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH ₃ 203 methyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH ₃ 5i 28 Tetraethoxysilane (CH ₃ CH ₂ O) ₄ Si	106	vinyltris(2-methoxyethoxy)silane	(CH ₃ OCH ₂ CH ₂ O) ₃ Si-CH=CH ₂						
METHACRYLOXY AND MERCAPTO2503-methacryloxypropyltrimethoxysilane(CH3O)35i-(CH2)3O-(C=O)-C(CH3)=CH24423-mercaptopropyltrimethoxysilane(CH3O)35i-(CH2)25HOXIMEMOSmethyltris(methylethylketoxime)silane(CH3CH2C(CH3)=N-O)35i-CH3VOSvinyltris(methylethylketoxime)silane(CH3CH2C(CH3)=N-O)35i-CH2CH2ACETOXYMTASmethyltriacetoxysilane(CH3-(C=O)-O)35i-CH3ETASethyltriacetoxysilane(CH3-(C=O)-O)35i-CH3CH3PTAS/MTAS 70:30propyltriacetoxysilane / methyltriacetoxysilane 70:30(CH3-(C=O)-O)35i-CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3C	276	vinyltrimethoxysilane	(CH ₃ O) ₃ Si-CH=CH ₂						
3-methacryloxypropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ O-(C=O)-C(CH ₃)=CH ₂ 442 3-mercaptopropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ SH OXIME MOS methyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₃ VOS vinyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH=CH ₂ ACETOXY MTAS methyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ETAS ethyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ PTAS/MTAS 70:30 propyltriacetoxysilane / methyltriacetoxysilane 70:30 (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₂ CH ₃ and (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH ₃ O) ₃ Si-(CH ₂), CH ₃ 118 methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₂ CH ₂ CH ₃ 203 methyltriethoxysilane (CH ₃ O) ₃ Si-CH ₃ (CH ₃ CH ₂ O) ₃ Si-CH ₃	780	vinyltriethoxysilane	(CH ₃ CH ₂ O) ₃ Si-CH=CH ₂						
442 3-mercaptopropyltrimethoxysilane (CH ₃ O) ₃ Si-(CH ₂) ₃ SH OXIME MOS methyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₃ VOS vinyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH=CH ₂ ACETOXY MTAS methyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ETAS ethyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ PTAS/MTAS 70:30 propyltriacetoxysilane / methyltriacetoxysilane 70:30 (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ and (CH ₃ -(C=O)-O) ₃ Si-CH ₃ CH ₃ ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH ₃ O) ₃ Si-CH ₃ 118 methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₂ CH ₂ CH ₃ 203 methyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH ₃ Si 28 Tetraethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH ₃	METHACRYLOXY A	ND MERCAPTO							
OXIME MOS methyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₃ VOS vinyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH=CH ₂ ACETOXY MTAS methyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ETAS ethyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ PTAS/MTAS 70:30 propyltriacetoxysilane / methyltriacetoxysilane 70:30 (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₂ CH ₃ and (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ CH ₃ ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-(CH ₂) ₇ CH ₃ 118 methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₂ CH ₂ CH ₃ 203 methyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH ₃ Si 28 Tetraethoxysilane (CH ₃ CH ₂ O) ₄ Si	250	3-methacryloxypropyltrimethoxysilane	$(CH_3O)_3Si-(CH_2)_3O-(C=O)-C(CH_3)=CH_2$						
MOSmethyltris(methylethylketoxime)silane(CH3CH2C(CH3)=N-O)3Si-CH3VOSvinyltris(methylethylketoxime)silane(CH3CH2C(CH3)=N-O)3Si-CH=CH2ACETOXYMTASmethyltriacetoxysilane(CH3-(C=O)-O)3Si-CH3ETASethyltriacetoxysilane(CH3-(C=O)-O)3Si-CH2CH3PTAS/MTAS 70:30propyltriacetoxysilane / methyltriacetoxysilane 70:30(CH3-(C=O)-O)3Si-CH2CH3 and (CH3-(C=O)-O)3Si-CH2CH3 and (CH3-(C=O)-O)3Si-CH3ALKYL AND ALKOXY294N-octyltriethoxysilane(CH3CH2O)3Si-(CH2)7CH3118methyltrimethoxysilane(CH3O)3Si-CH3150propyltrimethoxysilane(CH3O)3Si-CH2CH2CH3203methyltriethoxysilane(CH3CH2O)3Si-CH3Si 28Tetraethoxysilane(CH3CH2O)3Si-CH3	442	3-mercaptopropyltrimethoxysilane	(CH ₃ O) ₃ Si-(CH ₂) ₃ SH						
VOS vinyltris(methylethylketoxime)silane (CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH=CH ₂ ACETOXY MTAS methyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ETAS ethyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ PTAS/MTAS 70:30 propyltriacetoxysilane / methyltriacetoxysilane 70:30 (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₂ CH ₃ and (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-(CH ₂) ₇ CH ₃ 118 methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₂ CH ₂ CH ₃ 203 methyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH ₃ Si 28 Tetraethoxysilane (CH ₃ CH ₂ O) ₄ Si	OXIME								
MTAS methyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ETAS ethyltriacetoxysilane (CH ₃ -(C=O)-O) ₅ Si-CH ₂ CH ₃ PTAS/MTAS 70:30 propyltriacetoxysilane / methyltriacetoxysilane 70:30 (CH ₃ -(C=O)-O) ₅ Si-CH ₂ CH ₂ CH ₃ and (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-(CH ₂) ₇ CH ₃ 118 methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₂ CH ₂ CH ₃ 203 methyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH ₃ Si 28 Tetraethoxysilane (CH ₃ CH ₂ O) ₄ Si	MOS	methyltris(methylethylketoxime)silane	(CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH ₃						
MTASmethyltriacetoxysilane(CH3-(C=O)-O)3Si-CH3ETASethyltriacetoxysilane(CH3-(C=O)-O)3Si-CH2CH3PTAS/MTAS 70:30propyltriacetoxysilane / methyltriacetoxysilane 70:30(CH3-(C=O)-O)3Si-CH2CH2CH3 and (CH3-(C=O)-O)3Si-CH2CH2CH3 and (CH3-(C=O)-O)3Si-CH3ALKYL AND ALKOXY(CH3CH2O)3Si-(CH2)7CH3294N-octyltriethoxysilane(CH3CH2O)3Si-(CH2)7CH3118methyltrimethoxysilane(CH3O)3Si-CH3150propyltrimethoxysilane(CH3O)3Si-CH2CH2CH3203methyltriethoxysilane(CH3CH2O)3Si-CH3Si 28Tetraethoxysilane(CH3CH2O)4Si	VOS	vinyltris(methylethylketoxime)silane	(CH ₃ CH ₂ C(CH ₃)=N-O) ₃ Si-CH=CH ₂						
ETAS ethyltriacetoxysilane (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃ PTAS/MTAS 70:30 propyltriacetoxysilane / methyltriacetoxysilane 70:30 (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₂ CH ₃ and (CH ₃ -(C=O)-O) ₃ Si-CH ₃ ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-(CH ₂) ₇ CH ₃ 118 methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₂ CH ₂ CH ₃ 203 methyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH ₃ Si 28 Tetraethoxysilane (CH ₃ CH ₂ O) ₄ Si	ACETOXY								
PTAS/MTAS 70:30 propyltriacetoxysilane / methyltriacetoxysilane 70:30 (CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₂ CH ₃ and (CH ₃ -(C=O)-O) ₃ Si-CH ₃ (CH ₂ O) ₃ Si-CH ₃ (CH ₃ O) ₃ Si-CH ₃ (CH ₃ O) ₃ Si-CH ₃ (CH ₃ O) ₃ Si-CH ₂ CH ₃ (CH ₃ O) ₃ Si-CH ₃ (CH ₃ O) ₃ Si-CH ₃ (CH ₃ O) ₃ Si-CH ₃ (CH ₃ CH ₂ O) ₃ Si-CH ₃ (CH ₃ CH ₂ O) ₃ Si-CH ₃ (CH ₃ CH ₂ O) ₄ Si	MTAS	methyltriacetoxysilane	(CH ₃ -(C=O)-O) ₃ Si-CH ₃						
ALKYL AND ALKOXY 294 N-octyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-(CH ₂) ₇ CH ₃ 118 methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ 150 propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₂ CH ₂ CH ₃ 203 methyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH ₃ Si 28 Tetraethoxysilane (CH ₃ CH ₂ O) ₄ Si	ETAS	ethyltriacetoxysilane	(CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₃						
N-octyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-(CH ₂) ₇ CH ₃ methyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₃ propyltrimethoxysilane (CH ₃ O) ₃ Si-CH ₂ CH ₂ CH ₃ methyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH ₃ Si 28 Tetraethoxysilane (CH ₃ CH ₂ O) ₄ Si	PTAS/MTAS 70:30	propyltriacetoxysilane / methyltriacetoxysilane 70:30	(CH ₃ -(C=O)-O) ₃ Si-CH ₂ CH ₂ CH ₃ and (CH ₃ -(C=O)-O) ₃ Si-CH ₃						
118methyltrimethoxysilane(CH3O)3Si-CH3150propyltrimethoxysilane(CH3O)3Si-CH2CH2CH3203methyltriethoxysilane(CH3CH2O)3Si-CH3Si 28Tetraethoxysilane(CH3CH2O)4Si	ALKYL AND ALKOX	Υ							
150propyltrimethoxysilane(CH₃O)₃Si-CH₂CH₂CH₃203methyltriethoxysilane(CH₃CH₂O)₃Si-CH₃Si 28Tetraethoxysilane(CH₃CH₂O)₄Si	294	N-octyltriethoxysilane	(CH ₃ CH ₂ O) ₃ Si-(CH ₂) ₇ CH ₃						
203 methyltriethoxysilane (CH ₃ CH ₂ O) ₃ Si-CH ₃ Si 28 Tetraethoxysilane (CH ₃ CH ₂ O) ₄ Si	118	methyltrimethoxysilane	(CH ₃ O) ₃ Si-CH ₃						
Si 28 Tetraethoxysilane (CH ₃ CH ₂ O) ₄ Si	150	propyltrimethoxysilane	(CH ₃ O) ₃ Si-CH ₂ CH ₂ CH ₃						
2 5 2 14	203	methyltriethoxysilane	(CH ₃ CH ₂ O) ₃ Si-CH ₃						
Si 40 Tetraethoxysilane oligomer oligomer	Si 28	Tetraethoxysilane	(CH ₃ CH ₂ O) ₄ Si						
	Si 40	Tetraethoxysilane oligomer	oligomer						

silanes connect

4	100		
			gs Ste
			1

						FUNC	TION	ALITY		
cas no.	purity	refractive index	flash point (°C)	boiling point (°C) @ mmHg	adhesion promoter	crosslinker	coupling agent	surface modifier	water scavenger	REACh registration
13822-56-5	≥ 97%	1,424	90	194	•		•			•
1760-24-3	≥ 97%	1,442	128	261	•		•	•		•
3069-29-2	≥ 97%	1,445	> 100	265	•		•	•		•
5089-72-5	≥ 95%	1,430	123	156 @ 15	•		•	•		•
58160-99-9	N.A.	1,370	> 95	> 100	•		•	•		Е
919-30-2	≥ 98.5%	1,419	96	217	•		•	•		•
919-30-2	≥ 99%	1,419	96	217	•		•	•		•
2530-83-8	≥ 98.5%	1,428	> 101	> 250	•		•	•		•
2602-34-8	≥ 98%	1,425	110	124 @ 3	•		•	•		
2897-60-1	≥ 97%	1,423	128	122 @ 5	•		•			•
1067-53-4	≥ 97%	1,433	> 80	285	•		•		•	
2768-02-7	≥ 99%	1,392	25	123	•		•		•	•
78-08-0	≥ 98%	1,398	34	160	•		•		•	•
2530-85-0	≥ 98%	1,428	108	225	•		•			•
4420-74-0	≥ 98%	1,442	88	212	•		•			•
22984-54-9	≥ 95%	1,455	> 95	≥ 200						•
2224-33-1	≥ 95%	1,465	> 95	113 @ 0.1						•
4253-34-3	≥ 90%	1,454	82	87 @ 3						
 17689-77-9	≥ 95%	1,412	> 106	180						•
17865-07-5 (PTAS), 4253-34-3 (MTAS)		1.521	85							•
2943-75-1	≥ 95%	1,416	> 65	98 @ 2				•		•
1185-55-3	≥ 98%	1,370	8	100				•		•
1067-25-0	≥ 97%	1,391	35	137				•		•
2031-67-6	≥ 98%	1,383	> 23	142				•		
78-10-4	≥ 99%	1,384	45	167				•		•
68412-27-3	N.A.	1,4	≥ 62	160				•		Е

Product selector

Compatibility guideline: polymers and functional groups of silanes

	FUNC	TION	AL GR	OUP (OF SIL	ANES
polymers	amino	ероху	vinyl	methacryloxy	mercapto	alkyl
RUBBER EPDM						
	•		•		•	
Butyl rubber	•				•	•
Neoprene rubber	•				•	
Nitrile rubber	•				•	
SBR Polysulfide	•				•	
Polybutadiene rubber	•				•	
					•	
Polyisoprene rubber					•	
NBR	•				•	
Silicone	•		•			•
Epichlorohydrin rubber					•	
Urethane rubber	•				•	
THERMOSET RESINS PU						
Phenolic	•		•		•	
	•				•	
Unsaturated polyester			•			
Ероху	•				•	
Melamine	•					
Furan	•					
Polyimide	•					
Diallyl phthalate			•			
THERMOPLASTIC RESINS PET						
PBT	•					
PVC						
PE	•				•	
PP			•			•
			•			•
PS ARC	•				•	
ABS	•				•	
PC	•					
PU	•				•	
Acrylic	•					•
Nylon	•	•				

Selection guideline: products and silanes

products	amino			epoxy				vinyl methacryloxy			mercapto oxime			acetoxy			alkyl alkoxy									
SILANIL®	138	176	307	505	581	919	919 HP	258	260	289	106	276	780	250	442	MOS	VOS	MTAS	ETAS	PTAS/MTAS 70:30	294	118	150	203	Si 28	Si 40
Crosslinked polyolefins												•														
Treated mineral fillers/glass fibers	•	•			•	٠	•								•							•	•	•	•	•
Fiber-reinforced unsat. polyester											•	•	٠													
Phenolic for foundry molds	٠	•				٠	•																			
Epoxy molding compounds	•	•	•			•	•								•											
Mineral wool for insulation	•					•	•																			
Artificial marble																										
Paints and coatings	٠	•			٠	٠	•			•	•	•	•									•	•	•	•	•
Sealants and adhesives	٠	•	•	•		٠	•		•		•	•	•		•	•		•	•	•		•	•	•	•	•
Copper clad laminates	٠	•				٠	•																			
Copper foil	•					٠	•								٠											
Peroxide-cured rubber compounds						٠	•				•		•													
Sulfur-cured rubber compounds						٠	•								٠											
Ziegler-Natta catalyst																						٠	•		•	

Application guideline for silanes

Filler treatment

A silane solution is prepared by dissolving 10 wt% of silane into a solvent mixture of alcohols:water at 90:10 by wt. Isopropanol, ethanol, and methanol can be used.

A few drops of diluted acetic acid may be added into the silane solution to adjust pH; pH in the range of 4-5 is recommended. The purpose of pH adjustment is to accelerate hydrolysis reaction. Nevertheless, the pH adjustment is not required for the amino silane solution.

The silane solution will be aged for overnight, then applied to fillers by using mixing instruments, for example, Twin Shell mixer, Henschel mixer, or Littleford Lodige mixer.

Amount of silane in the solution may be estimated from size of filler particles.

size of filler particles	amount of silane*
> 20 microns	< 0.5 wt%
10 - 20 microns	0.5 - 1 wt%
1 - 10 microns	1 - 1.5 wt%
<1 micron	1.5 - > 2 wt%

^{*} which is sufficient for filler surface coverage (% based on weight of

Silanil® 138 Treated Silica Nanopowder

before aft

Polymer modification by grafting

Emulsion polymerization

- Silane, e.g. Silanil® 276 or Silanil® 250, is used to graft onto polymer backbone during polymerization. It is recommended to add silane into monomer mixture tank after the monomer mixture is discharged approx. 80-90% of total monomers into polymerization kettle. In addition, silane is advised to add in pre-emulsion stage.
- Core-shell emulsion polymerization is also recommended; it consists of seed, core, and shell stages. Silane is added in the shell stage.
- Recommended dosage of silane in emulsion is 0.2-2 wt% based on total weight of monomers.

Crosslinked polyethylene (XLPE)

- For Soaking process, silane is mixed with dicumyl peroxide (initiator) and tin catalyst, then the mixture is discharged into PE pellets and other solid additives. Later, all ingredients are soaked at least overnight in a closed container, in which Aluminium foil bag and desiccant vent dryer are recommended for moisture prevention.
- For Siloplas process, silane is mixed with dicumyl peroxide. A side feeder is recommended for injecting the silane blend into a barrel. A twin screw extruder with L/D ratio >35 is necessary to be used for grafting process (part A), later a conventional single screw can be used to compound part A and part B (tin catalyst masterbatch).
- Recommended dosage of silane is 1-2 wt% based on weight of PE.

Polymer modification by integral blending

Silane, e.g. Silanil® 258, can be directly blended into resin, without fillers, additives, or pigments. Dosage of silane is typically used from 0.2 wt% up to 2 wt% based on solid content of resin. Ladder test is recommended to find an optimum dosage.

In case of waterborne resin, pH of resin should be near to neutral or less than pH 8.5 prior to addition of silane. The neutral pH can minimize hydrolysis rate of alkoxy groups, that the accelerated hydrolysis may cause self-crosslinking of silanes by silanol groups.

Induction time is required for the mixture of silane and resin; it implies the minimum aging time required for the mixture before the significant properties of the mixture is developed. At least overnight until a few days is recommended. For waterborne resin, the proper induction time can be studied by plotting curve of pH evolution against time. The induction time will be at the onset point where the pH value is started to dramatically increase. Typical induction time is 5-48 hours.

High shear and agitation can accelerate the induction time. Other additives and fillers are recommended to add after the induction time as well as application tests. If pH adjustment is required for the end product, it is also advised to adjust the pH value after the induction time.

Silanil® 258 could significantly increase hardness and elastic modulus of a waterborne acrylic resin by integral blending

Viscoelastic graph* Silanil® 258 modified acrylic resin

= acrylic resin with Silanil[®] 258= acrylic resin without silane

waterborne acrylic resin	hardness (MPa)	elastic modulus** (MPa)
acrylic without silane	29 ± 1	1,837 ± 52
acrylic with Silanil® 258	40 ± 3	1,917 ± 79

^{*} by nano-indentation test using Berkovich indentor and 5 mN load

Recommendation for storage and handling

 $m N_2$ gas is required to purge into a container to get rid of moisture before and after filling silane liquid.

In case of sample packing without N_2 gas, the minimum air space in a sample container is recommended.

Inner and outer caps must be tightly closed. More air space left in the container may cause self-crosslinking of silanes.

Equipment should be cleaned with ethanol or methylated spirits and dried completely before use.

Stainless steel, glass, and Teflon® are recommended for contact with silanes.

Some silanes such as Silanil® 250 are recommended to keep in an amber container to avoid the sun light.

^{**} reduced modulus

BRB International BV

PO Box 3552 NL-6017 ZH Thorn Office: Europastraat 5 NL-6014 CD Ittervoort The Netherlands

P+31 475 560 300 F+31 475 560 323 info@brbbv.com www.brb-international.com

BRB CEE sp. z.o.o.

BRB ST Kimyasal

BRB Dubai

Qingdao BRB Trading co. Ltd.

BRB Hong Kong

BRB Silicone Synthesis Sdn. Bhd.

BRB Singapore Pte Ltd.

BRB Silicones South Africa

BRB Brazil

BRB North America Inc

Interested in our products?

Find a BRB contact or distributor in your region via www.brb-international.com/conta

Sales office
Production
Warehouse
R&D center